EnergyCAP Cost Avoidance Formula Validation

This document describes and illustrates the formulas used by the EnergyCAP software to perform cost avoidance calculations

Table of Contents

Formula \#	Description
F1................	Adjust for difference in billing period length (number of days) between baseline and current. Daily usage is the same and current bill monthly start-end dates fall on or between baseline start-end dates.
F1A.............Adjust for difference in billing period length (number of days) between baseline and current. Daily usage is different and start and/or end dates fall outside the month defined by the baseline bill.	
F2..............Adjust for difference in building floor area between baseline and current.	
F3..............Adjust for difference in commodity price between baseline and current.	
F5..............Adjust for difference in weather (degree days) between baseline and current.	
F6................Adjust for a missing current year bill.	
F7..............Adjust for a missing baseline bill.	
Adjust for a fuel switch between baseline and current.	

F10.............. Adjust for a fixed weather load increase/decrease between summer baseline and current.

F11.............. Adjust for a fixed weather load increase/decrease between winter baseline and current.

F12.............. Substitute an estimated daily use avoidance value.
F13.............. Substitute an estimated daily cost avoidance value

F14. \qquad Substitute a no-loss/no-gain cost avoidance value.

F15.............. Calculate use and cost avoidance as an estimated monthly value.

F16.............. Calculate cost avoidance as avoided units x estimated marginal unit cost.

F17.............. Apply a marginal unit price factor.
F18............... A real-world situation in which adjustments for weather, floor area, average unit cost, a percentage-based load increase, fixed quantity load increase, and billing period length are in effect at the same time.

Case 1

The building owner received identical baseline and current bills. Usage was $10,000 \mathrm{KWH}$ and cost was $\$ 1,000$. The only difference is that in the baseline year, the billing period was 32 days and in the current year the billing period was 28 days. Formula \#1 adjusted the 32-day baseline to today's equivalency condition of 28 days, a downward adjustment. Even though the "raw" bills were for the same the usage and cost, the billing period adjustment resulted in a calculation of use avoidance of $-1,250 \mathrm{KWH}$ and cost avoidance of - $\$ 125$ (a loss). In Case 1, the start/end dates of the current year bill fall entirely within the start/end dates of the baseline bill. There are two client applications of EnergyCAP that connect to the database-the Web Browser Client and the Installed Windows Client. Both are used in parallel. In general the Windows Client is used by power-users and administrators.

Formula

Adjust for difference in billing period length (number of days) between baseline and current. Daily usage is the same and current bill monthly start-end dates fall on or between baseline start-end dates.

DATA	Baseline	Today	Definition
	BLuse BLcost BLdays	TDuse TDcos TDday	Total use/consumption in billing period Total cost in billing period Total number of days in billing period
FORMULAS			Adjustment = TDdays / BLdays Luse $=$ BLuse*BPA
	Use Avoidance $=$ AdjBLuse - TDuse		
	Cost Avoidance $=$ AdjBLuse * TDcost/TDuse - TDcost		

Example:

BPA: Billing Period Adjustment = TDdays / BLdays
Adj BLuse $=$ BLuse * BPA $=10,000$ * $0.875=8,750$

> Use Avoidance = Adj BLuse - TDuse
= 8,750 - 10,000 = - 1,250 kWh

Cost Avoidance $=$ Adj BLuse * TDcost/TDuse - TDcost

$$
=8,750 * 1000 / 10,000-1000=-\$ 125
$$

Case 1A

The building owner received these base year bills:
June 6/1/07-7/1/07; 5000 kWh
July $7 / 1 / 07-8 / 1 / 07 ; 10,000 \mathrm{kWh}$
August 8/1/07-9/1/07; $20,000 \mathrm{kWh}$
The current year bill for July is $6 / 26 / 09-8 / 6 / 09 ; 10,000 \mathrm{kWh}$
Even though this $10,000 \mathrm{kWh}$ bill is equal to the baseline July bill, today's bill includes five days in June and five more in August. EnergyCAP adjusts the July baseline upwards by adding 5 June days @ $166.67 \mathrm{kWh} /$ day and 5 August days @645.16 kWh/day, resulting in avoided usage of $4,060 \mathrm{kWh}$ and Cost Avoidance of $\$ 406$.

Formula

Adjust for difference in billing period length (number of days) between baseline and current. Daily usage is different and start and/or end dates fall outside the month defined by the baseline bill.

	Baseline	Today	Definition
DATA	BLuse BLcost BLdays BLbillingperiod AdjBLuse	TDuse TDcost TDdays TDbillingperiod	Total use/consumption in billing period Total cost in billing period Total number of days in billing period The billing period start-end dates The BL usage in the same date start-end range as today's bill

[^0]
Example:

Also:
June bill ($6 / 1 / 07-7 / 1 / 07$) $=5,000 \mathrm{kWh}$
August bill (8/1/07-9/1/07)=20,000 kWh

Use Avoidance $=($ AdjBLuse $)-$ TDuse

Cost Avoidance=(AdjBLuse)(TDcost/TDuse)-TDcost

The View Savings window (see next page) shows the AdjBLuse (the baseline bills that have been distributed by day and then summed across today's start-end date range).

> AdjBLuse=14,060

Use Avoidance=AdjBLuse-TDuse=14,060-10,000=4,060 kWh
Cost Avoidance=(AdjBLuse)(TDcost/TDuse)-TDcost
14060(1000/10,000)-1000=\$406

See next page for image

Example:

Case 2

The building owner received a baseline bill for $10,000 \mathrm{KWH}$ and $\$ 1,000$. The current year bill for the same month was $12,000 \mathrm{KWH}$ and $\$ 1,200$. Although it appears that performance was poor due to the usage and cost increase, the building floor area was expanded from $10,000 \mathrm{sq} \mathrm{ft}$ in the baseline year to $15,000 \mathrm{sq} \mathrm{ft}$ today. Formula \#2 adjusted the $10,000 \mathrm{sq} \mathrm{ft}$ baseline up to today's condition of $15,000 \mathrm{sq} \mathrm{ft}$. Even though the "raw" bill today exceeded the baseline, the floor area adjustment resulted in a calculation of use avoidance of $3,000 \mathrm{KWH}$ and cost avoidance of $\$ 300$.

Formula

Adjust for difference in building floor area between baseline and current.

Example:

$$
\text { Factor=TDsqft / BLsqft }=15000 / 10000=1.5
$$

Use Avoidance $=$ Adj BLuse - TDuse $=(10,000 * 1.5)-12,000=3,000 \mathrm{kWh}$

Cost Avoidance $=$ Adj BLuse * TDcost/TDuse - TDcost

$$
=15,000 * 1,200 / 12,000-1200=\$ 300
$$

Case 3

The building owner received identical $\$ 1,000$ bills in the baseline and today, indicating an apparent no loss/no gain situation. However, usage in the baseline was $10,000 \mathrm{KWH}$ and $8,333 \mathrm{KWH}$ today, so there was a usage reduction of $1,667 \mathrm{KWH}$. The costs are identical because the average commodity price increased from $\$ 0.10$ to $\$ 0.12$. In Formula \#3, the baseline is adjusted to today's condition of $\$ 0.12 / \mathrm{KWH}$ electricity, resulting in a calculated cost avoidance of \$200.

Formula

Adjust for difference in commodity price between baseline and current.

NOTES:

1. The auc reasonableness test guards against inflated auc due (for example) to a bill with minimal use and a monthy service charge. Reasonableness 'safety net' limits are set in Administration > Cost Avoidance Settings; the default range is between 50 percent LESS and 350 percent GREATER than the BLauc.

TDauc reasonable? (Up 20\% over baseline, which is reasonable)

In this case, there are no adjustments so Adj BLuse = BLuse
Use Avoidance = Adj BLuse - TDuse

$$
\text { Cost Avoidance }=(\text { Adj BLuse*auc })-\text { TDcos }
$$

Use Avoidance $=$ BLuse - TDuse $=10,000-8,333=1,667 \mathrm{kWh}$

Cost Avoidance $=($ BLuse*auc $)-$ TDcost $=\left(10,000^{*} .120\right)-1000=\$ 200$

Case 4

The building owner received identical July 2007 baseline and July 2009 current bills. Usage was 76,000 KWH and cost was $\$ 7,600$. It appears that energy performance was no loss/no gain, but upon closer examination, the building owner discovers that the weather was cooler this July than the same month in the baseline year. Cooling degree days were down by 10% (from 697 to 623), resulting in lower A/C loads this year. But it's not correct to say that usage should have been down by a corresponding 10% because not all usage is weathersensitive (lighting, for example, is not sensitive to outdoor temperature). The regression analysis process determined that in July 2007 the meter consumed 1,706 KWH/day ($52,879 \mathrm{KWH}$) on non-weather sensitive loads and $33.17 \mathrm{KWH} / \mathrm{CDD}(23,121 \mathrm{KWH})$ on weather loads. The adjustment process adjusted the weather to today's condition of 623 CDD (vs. 697 CDD in the base year), a downward adjustment of $2,455 \mathrm{KWH}$ for a cost avoidance of -\$245.

Formula

Adjust for difference in weather (degree days) between baseline and current.

\section*{Baseline | BLuse | TDuse |
| :--- | :--- |
| BLcost | TDcost |
| BLDD | TDDD |
 Total use/consumption in billing period Total cost in billing period
 Degree days in billing period ${ }^{(1)}$}

Adj BLuse $=\sum$ Daily Baseloads $+\sum$ Daily TDDD*Regression Slope Use Avoidance = Adj BLuse - TDuse

Cost Avoidance $=(\text { Adj BLuse })^{*}($ TDcost $/$ TDuse $)-$ TDcost

FORMULAS

NOTES:

1. HDD and CDD in billing period are calculated separately from MDT data using a user-defined balance point temperature. System default is 55 degrees F.
2. (see process diagram, second page) When seasonal adjustment is indicated, each baseline bill is disaggregated into daily baseload and weather load components as follows:
(a) Multiply regression slope * total degree days to drive the total weathersensitive usage.
(b) Subtract weather usage from total billed usage. The remainder is the nonweather base load.
(c) Evenly distribute the baseload to each day in the billing period

Match up each billing period in baseline year with sum of daily degree days (HDD and CDD summed separately)

Delete from summer or winter analysis any month where average daily degree days < minimum (minimum is configurable; default is 0.5 DD/Day)

Perform single linear regression for each season separately.
Independent variable = DD/Day
Dependent variable = Use/Day

Populate daily baseline table with non-weather baseloads and weather loads. See CAP06 report ${ }^{(2)}$.

See next page for data and software interface examples.

Baseline Year Data:

Current Year Data:

USE: 76,000 kWh, 31 days
COST: \$7,600
WEATHER DATA: CDD down 10.6\% in 2009 vs. 2007 (see images) 697 CDD vs. 623 CDD

Regression Results:

SLOPE: 33.17

R-SQUARE: 0.8552

CALCULATIONS
Use Avoidance $=$ โDaily Baseloads + Daily TDDD*Regression Slope) - TDuse $=\left(52879+(623)^{*} 33.17\right)-76,000=-2,455 \mathrm{kWh}$

Cost Avoidance = Adj BLuse * (TDcost / TDuse) - TDcost
$=[52879+(623)(33.17)](.1)-7600$
= \$-245.61

July 2009

	Base Year				Comparison Year			
	MDT	HDD	CDD	TDD	MDT	HDD	CDD	TDD
1	72	0	17	17	75	0	20	20
2	70	0	15	15	73	0	18	18
3	67	0	12	12	70	0	15	15
4	77	0	22	22	72	0	17	17
5	75	0	20	20	68	0	13	13
6	77	0	22	22	72	0	17	17
7	77	0	22	22	76	0	21	21
8	78	0	23	23	71	0	16	16
9	82	0	27	27	70	0	15	15
10	84	0	29	29	73	0	18	18
11	80	0	25	25	75	0	20	20
12	75	0	20	20	79	0	24	24
13	75	0	20	20	76	0	21	21
14	75	0	20	20	69	0	14	14
15	82	0	27	27	74	0	19	19
16	80	0	25	25	83	0	28	28
17	80	0	25	25	78	0	23	23
18	83	0	28	28	73	0	18	18
19	81	0	26	26	70	0	15	15
20	74	0	19	19	73	0	18	18
21	74	0	19	19	76	0	21	21
22	76	0	21	21	77	0	22	22
23	76	0	21	21	77	0	22	22
24	74	0	19	19	75	0	20	20
25	77	0	22	22	77	0	22	22
26	81	0	26	26	79	0	24	24
27	82	0	27	27	80	0	25	25
28	79	0	24	24	81	0	26	26
29	79	0	24	24	79	0	24	24
30	80	0	25	25	79	0	24	24
31	80	0	25	25	78	0	23	23

Explanation of Savings

F5

Case 5

An electric bill for one building has not yet been received for the month. The Energy Manager needs to run the monthly cost avoidance reports today. It would be incorrect to show this month as a large savings (energy cost went from $\$ 1,000$ in the baseline to zero today). The adjustment process causes this month for this meter to be skipped. Cost avoidance will be calculated when the bill is processed. There will be no entry on cost avoidance reports.

Formula

Adjust for difference in weather (degree days) between baseline and current.

FORMULAS

Cost Avoidance $=$ not calculated ${ }^{(1)}$

References:

1. No value is reported for this month. Savings cannot be calculated when today's bill is missing.

Example:

Use Avoidance =not calculated

Cost Avoidance $=$ not calculated

Case 6

An electric bill for one building is not available for a baseline month. The Energy Manager has not noticed the data gap. It would be incorrect to show this month as a large loss (energy cost went from zero in the baseline to $\$ 1,000$ today). The adjustment process causes this month for this meter to be set to no loss/no gain. Cost avoidance will be calculated when the actual bill or a reasonable estimate is processed.

Formula

Adjust for a missing baseline bill.

FORMULAS
Use Avoidance $=0{ }^{(1)}$

References:

1. Savings cannot be calculated when the baseline bill is missing. It is recommended that an estimated bill be used. EnergyCAP reports no loss/no gain, i.e. Use and Cost Avoidance $=0$.

Example:

[^1]Cost Avoidance $=0$

Case 7

A building heated with oil in the baseline year (1,000 gallons and $\$ 1,500$) has been converted to burn natural gas today (800 therm and $\$ 1,200$). This is considered a "fuel switch." The adjustment formula nets the baseline and current costs for a cost avoidance of $\$ 300$. The baseline oil usage is shown as savings and today's gas usage is shown as loss.

Formula

Adjust for a fuel switch between baseline and current.

References:

1. In a fuel switch, the BLCommodity is shown as positive use avoidance and the TDCommodity is shown as negative use avoidance.
2. A fuel switch scenario uses the net cost difference between costs. Be sure to set the meter CAP Cost Adjustment Setting to "Net Cost Difference."

NOTE: For both meters, zero use/cost bills must be entered. Otherwise, F5 \& F6 rules will be followed.

Example:

Use Avoidance (oil) $=+$ BLuse $=1000$ galUse Avoidance (gas) $=-$ TDuse $=-800$ therm

Cost Avoidance $=$ BLCost - TDcost $=1,500-1,200=\$ 300$

Case 8

The building owner received identical baseline and current bills. Usage was 10,000 KWH and cost was $\$ 1,000$. Even though it appears that energy management efforts were fruitless, the building owner knows that energy management actions resulted in lower usage. The building owner realizes that addition of a new computer lab has eroded apparent energy savings. Metered (or calculated) results show an increase of 30 KWH/day. Formula \#8 adjusted the baseline up to today's condition by applying a $30 \mathrm{KWH} /$ day adjustment. The adjustment resulted in a calculation of use avoidance of 960 KWH and cost avoidance of $\$ 96$.

Formula

Adjust for a fixed daily non-weather load increase or decrease (x.xx units/day), due to equipment, appliance, occupancy or schedule change between baseline and current.

Daily Use Increase/Decrease = Change due to equipment, occupancy, schedule (DailyAdj)

Example:

Daily Use Increase of $30.00 \mathrm{kWh} /$ day due to new computer lab. 250 watts per workstation * 7 hrs/day * $5 / 7$ days/week * 24 workstations

$$
=30,000 \mathrm{watts} / \mathrm{hrs} / \mathrm{day}=30.00 \mathrm{kWh} / \text { day }
$$

> Use Avoidance $=[$ BLuse $+($ DailyAdj*TDdays $)]-$ TDuse $=$ $\left[10,000+\left(30^{*} 32\right)\right]-10,000=960 \mathrm{kWh}$

> Cost Avoidance $=[$ Adj BLuse * $($ TDcost $/$ TDuse $)]$ -
> TDcost $=[10,000+(30 * 32)]^{*}(0.10)-1,000=\$ 96$

Case 9

The building owner received identical baseline and current bills. Usage was $10,000 \mathrm{KWH}$ and cost was $\$ 1,000$. Even though it appears that energy management efforts were fruitless, the building owner knows that energy management actions resulted in lower usage. The building owner realizes that difficult to quantify "load creep" has eroded apparent energy savings. Load creep is a gradual increase in usage due to everincreasing proliferation of appliances and equipment that use electricity - smart boards, security equipment, IT equipment, chargers (cell phones, earphones, iPods, PDAs, etc) and so on. Formula \#9 adjusted the baseline up to today's condition by applying a 4\% load creep adjustment. The load creep adjustment resulted in a calculation of use avoidance of 400 KWH and cost avoidance of $\$ 40$.

Formula

Adjust for a percentage-based non-weather load increase or decrease (x.xx \%) due to load creep, equipment, appliance, occupancy or schedule change between baseline and current.

\% Use Increase/Decrease = Change due to load creep, equipment, occupancy, schedule (Adj\%)

Cost Avoidance $=[$ Adj BLuse * (TDcost / TDuse) $]$ - TDcost

Example:

Load Creep increase of 4.0\%

$$
\begin{gathered}
\text { Use Avoidance }=\left[\text { BLuse } * \frac{\text { Adj } \%+100 \%}{100 \%}\right]-\text { TDucse } \\
{[10,000 *(1.040)]-10,000=400 \mathrm{kWh}}
\end{gathered}
$$

Cost Avoidance $=[$ Adj Bluse * $($ TDcost $/$ TDuse $)]-$ TDcost

$$
=10,400(0.1)-1,000=\$ 40
$$

EnergyCAP Cost Avoidance Calculation Process and Formula

Case 10

The case is the same as \#4 with one exception. Insulation has been added to the roof of the building resulting in a calculated decrease in A/C load of $8 \mathrm{KWH} / \mathrm{CDD}(-24.12 \%)$. The insulation project is not the result of Energy Manager efforts, so the impact must be "removed" from the use and cost avoidance values by adjusting the baseline downwards to reflect what would have been used in the base year had the insulation been in place then. A downward adjustment of 8 KWH/CDD (-24.12\%) is applied to today's CDD of 623, resulting in an adjustment of $-4,984 \mathrm{KWH}$. The use avoidance is $-7,441$ and cost avoidance is $-\$ 744$.

Formula

Adjust for a fixed weather load increase/decrease between summer baseline and current.

> Use Avoidance = Adj BLuse - TDuse

FORMULAS
Use Avoidance $=(\Sigma$ Daily Baseloads $+\Sigma$ Daily TDDD*Regression Slope $+\Sigma$ Daily TDDD*CDDAdj) - TDuse

NOTES: TDDD refers to heating or cooling degree days (HDD or CDD).In EnergyCAP, summer (CDD) and winter (HDD) weather correlations are determined independently.

Cost Avoidance = Adj BLuse * (TDcost / TDuse) - TDcost

F10
 EnergyCAP Cost Avoidance Calculation Process and Formula
 Rev4 2-24-14

Example:

Today

$$
\begin{aligned}
& \text { Tduse }=76,000 \\
& \text { Tdcost }=\$ 7,600 \\
& \text { TDsqft }=10,000 \\
& \text { TDcdd }=623
\end{aligned}
$$

Regression Slope (weather factor) $=33.17 \mathrm{kWh} / \mathrm{cddCDDadj}=-8 \mathrm{kWh} / \mathrm{cdd}(-24.12 \%)$
Use Avoidance $=$ Adj BLuse - TDuse
Use Avoidance $=\left(\sum\right.$ Daily Baseloads + [Daily TDDD*Regression Slope +
\sum DailyTDDD*CDDAdj $)-$ TDuse
$=\left[52,879+(623)^{*} 33.17+\left(-8^{*} 623\right)\right]-76,000=-7,441 \mathrm{kWh}$

$$
\begin{aligned}
\text { Cost Avoidance }=\text { Adj Bluse * } & (\text { TDcost } / \text { TDuse })-\text { TDcost }=68,560(0.10) \\
& -7,600=\$-744
\end{aligned}
$$

Case 11

Formula 11 is exactly the same as \#10, except it's for a winter weather adjustment rather than a summer adjustment. No separate example is necessary because the process is exactly the same (heating degree days are used rather than cooling degree days).

Formula

Adjust for a fixed weather load increase/decrease between winter baseline and current.

FORMULAS
Use Avoidance $=$ Adj BLuse - TDuse
Use Avoidance $=\left(\Sigma\right.$ Daily Baseloads $+\sum$ Daily TDDD*Regression Slope $+\sum$ Daily TDDD*HDDAdj) - TDuse

Cost Avoidance $=$ Adj BLuse * (TDcost $/$ TDuse) - TDcost

NOTES: TDDD refers to heating or cooling degree days (HDD or CDD).In EnergyCAP, summer (CDD) and winter (HDD) weather correlations are determined independently.

NOTES: F11 is exactly the same as F10 except:Use heating degree days (HDD) instead of cooling degree days (CDD)

F12

EnergyCAP Cost Avoidance Calculation Process and Formula

Case 12

The building owner received identical baseline and current bills. Usage was 10,000 KWH and cost was $\$ 1,000$. Due to a partial month shutdown due to a construction project, neither bill is relevant. The owner and energy manager have agreed upon an estimated use avoidance value of $100 \mathrm{KWH} /$ day, based upon experience in a prior month. Applying this to the 28 -day billing period and average unit cost of $\$ 0.10$ yields a cost avoidance of $\$ 280$.

Formula

Substitute an estimated daily use avoidance value.

Example:

$$
\text { Use Avoidance }=(\text { TDdua*TDdays })=100 * 28=2,800 \mathrm{kWh}
$$

Cost Avoidance $=(\text { Use Avoidance })^{*}($ TDcost $/$ TDuse $)=2800(1000 / 10,000)=\$ 280$
*The Daily Use Avoidance value (TDdua) is entered into EnergyCAP via a manual adjustment to the adjusted baseline usage, also called "Baseline Adjusted to Current Conditions". In this case, the daily baseline usage is $10,000 / 28=357.14$. In order to "force" an agreed-upon daily use avoidance of $100 \mathrm{KWH} /$ day, the baseline must be adjusted upward by that amount. The new daily adjusted baseline (BATCC) value is $357.14+100=$ 457.14 KWH/day, and that value is entered into EnergyCAP.

Case 13

The building owner received identical baseline and current bills. Usage was 10,000 KWH and cost was $\$ 1,000$. Due to a partial month shutdown due to a construction project, neither bill is relevant. The owner and energy manager have agreed upon an estimated cost avoidance value of $\$ 25 /$ day, based upon experience in a similar building. Applying this to the 28 -day billing period yields a cost avoidance of $\$ 700$.

Formula

Substitute an estimated daily cost avoidance value.

Example:

$$
\text { Use Avoidance }=\text { BLuse }- \text { TDuse }==10,000-10,000=0
$$

Cost Avoidance $=$ TDdca*TDdays $=25^{*} 28=\$ 700$
*The Daily Cost Avoidance value is entered into EnergyCAP via a manual adjustment to the adjusted baseline cost, also called 'Baseline Adjusted to Current Conditions'. In this case, the baseline cost is $1,000 / 28=$ 35.714 , so an adjustment of $+25 /$ day requires that 60.714 be entered into EnergyCAP.

F14

EnergyCAP Cost Avoidance Calculation Process and Formula

Rev3 2-11-14

Case 14

A building was closed for much of the month due to a renovation project. Even though today's use and cost (2,000 KWH and \$200) are less than the baseline year ($10,000 \mathrm{KWH}$ and $\$ 1,000$), it is unreasonable to claim this as cost avoidance attributable to energy management efforts. The "no loss/no gain" adjustment process sets avoidance to zero for this month.

Formula

Substitute a no-loss/no-gain cost avoidance value.

Example:

Use Avoidance $=0$

Cost Avoidance $=0$

* Building was closed most of the month due to a renovation project.

Case 15

Today's bill of $25,000 \mathrm{KWH}$ is 2.5 times the baseline of $10,000 \mathrm{KWH}$. This is due to a 7 -day conference and around-the-clock energy usage in the current month. It is not appropriate to show a large loss (negative avoidance) this month because the conference is a one-time event and not the result of poor energy management practices. The Energy Manager estimates a monthly use avoidance of $1,000 \mathrm{KWH}$ and cost avoidance of $\$ 100$, based on this building's performance in other months.

Formula

Calculate use and cost avoidance as an estimated monthly value.

Example:

Estimated use avoidance: 1,000 kWh

Estimated cost avoidance: \$100

Use Avoidance $=$ Estimated $=1,000 \mathrm{kWh}$

Cost Avoidance $=$ Estimated $=\$ 100$

F16

EnergyCAP Cost Avoidance Calculation Process and Formula

Rev3 9-16-09

Case 16

Today's bill of $8,000 \mathrm{KWH}$ shows a reduction from the baseline of $10,000 \mathrm{KWH}$. The average unit cost of $\$ 0.125$ in the current bill does not accurately reflect the value of the avoided KWH, though, because the meter is now on hourly pricing. The Energy Manager recognizes that more electricity has been saved in lower cost non-peak periods than during peak periods, and has calculated $\$ 0.08$ as a more reasonable marginal unit cost. This unit cost is applied to the use avoidance in the adjustment process, yielding a cost avoidance of $\$ 160$ for the month.

Formula

Calculate cost avoidance as avoided units x estimated marginal unit cost.

F16
 EnergyCAP Cost Avoidance Calculation Process and Formula
 Rev3 9-16-09

Example:

$$
\text { Rate }=\text { General Service }
$$

TDmuc = \$0.08
Rate $=$ Hourly Pricing

$$
\text { Use Avoidance }=\text { BLuse }- \text { TDuse }=10,000-8,000=2,000 \mathrm{kWh}
$$

$$
\text { Cost Avoidance }=\text { Use Avoidance*TDmuc }=2000 * 0.08=\$ 160
$$

Case 17

Today's bill of $8,000 \mathrm{KWH}$ shows a reduction from the baseline of $10,000 \mathrm{KWH}$. The average unit cost of $\$ 0.125$ in the current bill does not accurately reflect the value of the avoided KWH, though, because it is a "blended" average that includes the pricing factors of both KWH and KW. The Energy Manager recognizes that the reduction is "unbalanced" -- the KWH has been reduced by 20% but the KW has not been reduced at all. Therefore, use of a blended average rate is not reasonable. The Energy Manager determines that a 0.85 marginal unit price factor should be applied to reduce the average unit cost by 15%. This results in a final cost avoidance calculation of $\$ 62.50$.

Formula

Apply a marginal unit price factor

Use Avoidance $=$ Adj BLuse - TDuse $=10,000-8,000=2,000 \mathrm{kWh}$

Cost Avoidance $=\left[(\text { Adj BLuse })^{\star}(\text { TDcost } / \text { TDuse })^{\star}\right.$ MUPF] - TDcost $\left.=10,000 *(1000 / 8000)^{\star} .85\right]$

$$
-1000=\$ 62.50
$$

EnergyCAP Cost Avoidance Calculation Process and Formula

Rev4 2-24-14

Case 18

A real-world situation in which adjustments for weather, floor area, average unit cost, a percentage-based load increase, fixed quantity load increase, and billing period length are in effect at the same time. The process calculates the adjusted baseline use and applies the prevailing Average Unit Cost (AUC) to determine the Baseline Adjusted to Current Conditions (BATCC) cost, and then subtracts today's cost to yield Cost Avoidance.
The bills for the 2007 base year are the same as shown in F4. The current year bill is: START DATE: 7/7/2009; END DATE: 8/7/2009; USE: 76,000 kWh; COST: \$9,500

Formula

Adjust for differences between the base year and current year in:WEATHER: CDD down about 13\%, from 755 to 655FLOOR AREA: Increased by 20\% from 100,000 to 120,000 sq. ft.UNIT PRICE: Increased by 25%, from 0.10 to $0.125 / \mathrm{kWhLOAD}$ INCREASE: Increase of 4% (due to occupancy/schedule changes)NEW COMPUTER LAB: Added a load of $30 \mathrm{kWh} /$ dayBILLING PERIOD START/END DATES: Do not match

Process

1. Identify the current year bill data (see above)
2. Print the CAP06 Baseline Reports for this time period.
3. Using the CAP06, total the weather use, non-weather use, heating need and cooling need beginning on the start day and ending one day before the end day. The first day is always included, and the last day is always excluded to prevent double-counting of the end day.

BASELINE WEATHER USE: 25,045 kWh
BASELINE NON-WEATHER USE: 52,963 kWh
BASELINE HEATING NEED: 0 HDD
BASELINE COOLING NEED: 755 CDD
SUMMER USE/DEGREE: $33.17 \mathrm{kWh} / C D D$ (as shown on bottom of CAP06)
4. Determine the degree days in the current billing period. The weather report WTHR02 is helpful in this calculation. Be sure to use the balance point temperature that applies to this meter.

CURRENT COOLING DEGREE DAYS: 655 CDD (7/7/09 to 8/6/09)
5. Adjust for weather:

Current year weather use= Current Year CDD * summer use/degree 33.17 kWh/CDD * 655 CDD=21,726 kWh

NOTE: EnergyCAP performs this calculation for each day and then sums the daily weather use values. Some months may have a mix of HDD and CDD, in which case the weather use is the sum of the cooling and heating components.
6. The adjusted baseline usage (BATCC Use) is the sum of the base non-weather use + adjusted weather use (from step 5):
$52,963+21,726=74,689 \mathrm{kWh}$
7. Apply the floor area adjustment next.

The adjustment factor is $120,000 / 100,000=1.20$
$74,689 * 1.20=89,627 \mathrm{kWh}$
8. Apply CAP adjustments in the order shown on the screen:

\square	Sequence	Start Date	End Date i*	Occurrence	Cycle Start	Cycle End	Method	Amount	Type	
\square	2	1/1/2009	12/31/2049	Corthuous			Ads 4.00% to te total Earcc use	4.00	Load Creep	Oocupancy increase
\square	3	2702000	1231/2049	Cortrusus			Add 30 co per day to the earco nom-	3000	compters	New PCLab

Load Increase: 89,627*1.04 = 93,212 kWh
New PC Lab: 93,212 kWh +30 kWh/day*31 $=93,212+930=94,142 \mathrm{kWh}$
9. Apply today's unit price of $\$ 0.125: 94,142 \mathrm{kWh} * \$ 0.125=\$ 11,768$
10. Cost Avoidance $=$ Adj baseline Cost - Actual Cost

Cost Avoidance $=\$ 11,768-\$ 9,500=\$ 2,268$
11. Verify the calculations via the CAP10 Report and the View Savings window (see images, next pages).

Baseline Report CAP - 06

F18
 EnergyCAP Cost Avoidance Calculation Process and Formula
 Rev4 2-24-14

[^0]: | Divide the usage of each |
 | :--- |
 | BL bill by the number of |
 | days in the billing period |

 | Distribute the usage evenly |
 | :--- |
 | across the billing period. |
 | The first day counts but the |
 | last day doesn't. Use Report |
 | CAP06 to see results |

 See Next Page

[^1]: Use Avoidance $=0$

